§ 29.59 (c) Determination of the TDP must include the pilot recognition time interval following failure of the critical engine. [Doc. No. 24802, 61 FR 21899, May 10, 1996] ## §29.59 Takeoff path: Category A. - (a) The takeoff path extends from the point of commencement of the takeoff procedure to a point at which the rotorcraft is 1,000 feet above the takeoff surface and compliance with §29.67(a)(2) is shown. In addition— - (1) The takeoff path must remain clear of the height-velocity envelope established in accordance with §29.87; - (2) The rotorcraft must be flown to the engine failure point; at which point, the critical engine must be made inoperative and remain inoperative for the rest of the takeoff; - (3) After the critical engine is made inoperative, the rotorcraft must continue to the takeoff decision point, and then attain V_{TOSS} ; - (4) Only primary controls may be used while attaining V_{TOSS} and while establishing a positive rate of climb. Secondary controls that are located on the primary controls may be used after a positive rate of climb and V_{TOSS} are established but in no case less than 3 seconds after the critical engine is made inoperative; and - (5) After attaining V_{TOSS} and a positive rate of a climb, the landing gear may be retracted. - (b) During the takeoff path determination made in accordance with paragraph (a) of this section and after attaining V_{TOSS} and a positive rate of climb, the climb must be continued at a speed as close as practicable to, but not less than, V_{TOSS} until the rotorcraft is 200 feet above the takeoff surface. During this interval, the climb performance must meet or exceed that required by \$29.67(a)(1). - (c) During the continued takeoff, the rotorcraft shall not descend below 15 feet above the takeoff surface when the takeoff decision point is above 15 feet. - (d) From 200 feet above the takeoff surface, the rotorcraft takeoff path must be level or positive until a height 1,000 feet above the takeoff surface is attained with not less than the rate of climb required by §29.67(a)(2). Any secondary or auxiliary control may be used after attaining 200 feet above the takeoff surface. (e) Takeoff distance will be determined in accordance with §29.61. [Doc. No. 24802, 61 FR 21899, May 10, 1996; 61 FR 33963, July 1, 1996, as amended by Amdt. 29-44, 64 FR 45337, Aug. 19, 1999] ## § 29.60 Elevated heliport takeoff path: Category A. - (a) The elevated heliport takeoff path extends from the point of commencement of the takeoff procedure to a point in the takeoff path at which the rotorcraft is 1,000 feet above the takeoff surface and compliance with §29.67(a)(2) is shown. In addition— - (1) The requirements of §29.59(a) must be met; - (2) While attaining V_{TOSS} and a positive rate of climb, the rotorcraft may descend below the level of the takeoff surface if, in so doing and when clearing the elevated heliport edge, every part of the rotorcraft clears all obstacles by at least 15 feet; - (3) The vertical magnitude of any descent below the takeoff surface must be determined; and - (4) After attaining V_{TOSS} and a positive rate of climb, the landing gear may be retracted. - (b) The scheduled takeoff weight must be such that the climb requirements of §29.67 (a)(1) and (a)(2) will be met. - (c) Takeoff distance will be determined in accordance with §29.61. [Doc. No. 24802, 61 FR 21899, May 10, 1996; 61 FR 33963, July 1, 1996] ## § 29.61 Takeoff distance: Category A. - (a) The normal takeoff distance is the horizontal distance along the takeoff path from the start of the takeoff to the point at which the rotocraft attains and remains at least 35 feet above the takeoff surface, attains and maintains a speed of at least V_{TOSS} , and establishes a positive rate of climb, assuming the critical engine failure occurs at the engine failure point prior to the takeoff decision point. - (b) For elevated heliports, the take-off distance is the horizontal distance along the takeoff path from the start of the takeoff to the point at which the rotorcraft attains and maintains a speed of at least V_{TOSS} and establishes a